Более 7 лет опыта разработки и проектирования хранилищ данных в российских и одном европейском топ-банках. Работал на позициях как разработчика и аналитика, так и тимлида команды DWH, архитектора DWH. Академический опыт: 6 лет преподавания годичного курса “Базы данных” в МИРЭА для бакалавров. Также готовил студентов для получения как степени бакалавра, так и магистра. На данный момент Senior Data Engineer в эстонском iGaming стартапе.Интересы: все что связано с обработкой данных, в особенности, Modern Data Stack
Аналитические приложения сегодня строятся на стыке инженерных практик (Software/Data Engineering), понимании специфики продуктов и бизнеса (Data/Business Analysis), быстрой и качественной поставки сервисов (DevOps).
Курс ставит своей целью научить слушателей собирать полноценные end-to-end аналитические решения с использованием самых актуальных и востребованных инструментов.
Материал будет изучаться как вглубь (например, принципы функционирования аналитических СУБД), так и вширь (сравнение инструментов, анализ сильных и слабых сторон решений).
Что нового я смогу узнать?
Для ролей Data Scientist, Data Analyst, Product Analyst:– Принципы работы аналитических СУБД и построение ELT-pipelines– Использование лучших практик моделирования хранилищ данных и витрин– Применение правильных архитектурных паттернов при построении решений
Для ролей Data Engineer, Backend Developer, DBA, System Administrator:
– Практики построения end-to-end аналитических решений– Прикладные навыки визуализации, дашбординга, BI– Фокус на создании ценности для бизнеса
В рамках курса будут рассмотрены:
– Навыки построения ELT-pipelines: Airflow, Nifi, Stitch– Принципы работы аналитических СУБД: Redshift, Greenplum, Clickhouse– Лучшие практики моделирования данных: dbt, Data Vault– Визуализация и BI: Metabase, Superset, DataLens – Продвинутая аналитика: KPI, Funnels, Marketing Attribution, Cohort, RFM– DevOps-практики: Continuous Integration, Github Actions
Ссылка на подробную программу курса
Карта курсов направления Data Science в OTUS