Курс показался полезным для меня
Курс интересный, много практики. Хотя по ощущениям многовато домашних заданий, не успеваешь сконцентрироваться, тщательней обдумать выполнение заданий и заодно осмыслить теорию, почитать что-то сверх материала. Может быть имело бы смысл их уменьшить штук до 13-15. По мне идеально одно задание на неделю в среднем. Полезно, что проходили темы не на прямую связанные с машинным обучением, например - pipeline, парсинг. Нравится подача материала Дмитрием Сергеевым тем, что темы начинает объяснять с простого на пальцах, постепенно увеличивая сложность. Также очень хорошо, что Дмитрий Музалевский даёт обратную связь при проверке дз, подсказывает где можно что-то еще улучшить в будущем, задает направление. Ну либо подчеркивает, что сделано отлично)Может быть ещё бы добавил при прохождении каких-либо алгоритмов на занятиях объяснение где в каких моделях стоит на какие параметры обращать больше внимания, а на какие нет в конкретных часто используемых библиотеках. Что требует настройки, а что нет. Понятно, что в документации всё есть, но она не всегда понятна обычному не опытному человеку. Потому как в итоге работать придется с этими библиотеками, поэтому подробности не помешали бы.Было бы круто сделать интергацию резюме с hh или каким-нибудь моим кругом, поскольку очень не охото копи-пастить оттуда резюме, и при внесении изменений в hh, оно бы поменялось и у вас.Ну и надеюсь, что ваш сервис поможет найти работу связанную с машинным обучением)
Плюсы: Много практики, минимум теории. Изучили полезные темы по парсингу сайтов и pipeline.
Минусы: Присутствуют темы, которые не очень зашли, например - Vowpal Wabbit. Без базовых знаний машинного обучения будет сложно. Многовато домашних заданий. В некоторых темах очень быстро пробегаются по коду, что не позволяет разобраться в нем.